California Newborn Screening Program
Long-Term Follow Up Data Collection

Lisa Feuchtbaum, DrPH, MPH
Chief, Program Development & Evaluation Branch
Genetic Disease Screening Program
California Department of Public Health
Long-Term Follow Up for Newborn Screening

What is it?

• Systematic evaluation to determine if newborn screening is meeting its goal

Why do it?

• Assurance that condition-specific treatment & age-appropriate preventive care is available for individuals identified with a condition included in newborn screening *

California Newborn Screening Program
Development of Long-Term Follow Up System

• 2002: A framework for LTFU was created as part of the HRSA funded pilot study to examine the efficacy of MS/MS screening

• 2005: Implementation of a LTFU data system developed as part of a web-based Screening Information System (SIS)

• SIS supports all aspects of lab results reporting, mailer creation, patient referral tracking & coordination with specialty care follow-up centers

California Department of Public Health
California Newborn Screening Program

Follow Up Model

Clinical case coordinators refer screen positive newborns to state-contracted specialty care follow-up centers

Follow-up centers responsible Short Term Follow-Up: documentation of the services provided, health status of newborn & outcomes of confirmatory testing

No Disorder

Confirmed Disorder

Initiation of Long Term Follow-Up via Annual Patient Summary Data Collection
California Newborn Screening Program

Long-Term Follow Up Approach

Annual Patient Summary (APS) Reports:

- Collected for program evaluation purposes
- Data provided by state-contracted specialty care follow-up centers
- Once a year assessment of status of the child through fifth birthday
- State pays for submission of APS reports using SIS
- Reports document whether child is still in active care
- Clinical management strategies
- Clinical outcomes

California Department of Public Health
California Newborn Screening Program
Implementation of Long-Term Follow Up System Since 2005

- 2005: Metabolic LTFU
- 2007: Cystic Fibrosis LTFU
- 2011: Endocrine LTFU
- 2011: Hemoglobin LTFU
- 2013: SCID LTFU
- 2016: Coming: ALD LTFU
California Newborn Screening Program

10 Years of LTFU Data on Metabolic Disorders*

- Newborns Screened: 5,182,386
- Diagnosed Cases: 1,505
- Total Annual Patient Summaries: 5,208

* As of October 2015
10-Year Count of Annual Patient Summary Reports for Metabolic Disorders

<table>
<thead>
<tr>
<th>Disorder Name</th>
<th>Age of Child (Years)</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methylcrotonyl-CoA Carboxylase Deficiency (3MCC Deficiency)</td>
<td>109 94 66 47 36 352</td>
<td></td>
</tr>
<tr>
<td>Biotinidase Deficiency Partial (BD)</td>
<td>63 57 37 27 19 203</td>
<td></td>
</tr>
<tr>
<td>Biotinidase Deficiency Profound (BD)</td>
<td>44 32 29 22 18 145</td>
<td></td>
</tr>
<tr>
<td>Carnitine Transporter Deficiency (CTD)/Carnitine Uptake Defect (CUD)</td>
<td>63 52 41 29 19 204</td>
<td></td>
</tr>
<tr>
<td>Duarte Galactosemia (D/G)</td>
<td>109 108 54 46 37 354</td>
<td></td>
</tr>
<tr>
<td>Galactosemia, classical</td>
<td>26 25 29 23 25 128</td>
<td></td>
</tr>
<tr>
<td>Glutaric Acidemia type I (GA1)</td>
<td>45 40 35 28 23 171</td>
<td></td>
</tr>
<tr>
<td>Hyperphenylalaninemia, benign</td>
<td>68 60 48 43 33 252</td>
<td></td>
</tr>
<tr>
<td>Hyperphenylalaninemia, variant</td>
<td>64 60 55 54 46 279</td>
<td></td>
</tr>
<tr>
<td>Isovaleric Acidemia (IVA)</td>
<td>35 26 23 20 15 119</td>
<td></td>
</tr>
<tr>
<td>Long Chain Hydroxy Acyl-CoA Dehydrogenase Deficiency (LCHAD deficiency)</td>
<td>8 8 6 7 5 34</td>
<td></td>
</tr>
<tr>
<td>Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD Deficiency)</td>
<td>182 173 136 112 86 689</td>
<td></td>
</tr>
<tr>
<td>Methylmalonic Acidemia mut 0 (MMA)</td>
<td>18 20 18 14 10 80</td>
<td></td>
</tr>
<tr>
<td>Methylmalonic Acidemia mut- (MMA)</td>
<td>22 19 11 8 6 66</td>
<td></td>
</tr>
<tr>
<td>Methylmalonic Acidemia, Cbl C, D, F (MMA)</td>
<td>36 36 33 31 28 164</td>
<td></td>
</tr>
<tr>
<td>Phenylketonuria (PKU)</td>
<td>140 123 112 113 112 600</td>
<td></td>
</tr>
<tr>
<td>Short Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency)</td>
<td>150 122 88 61 44 465</td>
<td></td>
</tr>
<tr>
<td>Very Long Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD Deficiency)</td>
<td>52 45 36 29 28 190</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>1463 1277 986 814 668 5208</td>
<td></td>
</tr>
</tbody>
</table>
How Has Long-Term Follow Up Data Been Used?

Collaborative Studies:

- MS/MS Study, Hinton C et al, 4-State Collaborative Study (CDC)
- VLCADD Study, Merritt JL et al. (WSRGC)
- SCADD Study, Galant N, et al. (UCLA)
- 3MCC Study, Lam C, et al. (UCLA)
- CF genotype-phenotype studies, Salinas D, et al (CHLA)
- MS/MS, NIH-funded U19 Study (UCSF)
Long-Term Follow Up Data Uses

What % of children with diagnosed disorders...

• are in care through age five?
• become lost to follow-up?
• have disorder-related complications?
• died and for what reasons?
• have developmental delay?
• have high rates of ER visits & in-patient hospitalizations?
• have more frequent visits to the specialty care follow-up centers?
What percent of children with RUSP Primary MSMS disorders remained in active care between the ages of one and five years old?

- 10 years of MS/MS screening: 2 five year cohorts
- 2,514,004 newborns screened between 07/07/2005 to 07/06/2015.
- 448 RUSP Primary Metabolic Disorders diagnosed
Cumulative % of initial cohort remaining in active care by follow-up year (n=488)

Year of follow-up

1 year: 83% (374/448)
2 years: 73% (329/448)
3 years: 67% (300/448)
4 years: 61% (274/448)
5 years: 56% (250/448)
Reported reasons for discontinuation of care by follow-up year

<table>
<thead>
<tr>
<th>Lost to follow-up</th>
<th>Refused follow up</th>
<th>Treatment deemed not necessary</th>
<th>Move-out-of state</th>
<th>Child died</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1 (n=448)</td>
<td>5.6</td>
<td>2.2</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Year 2 (n=374)</td>
<td>5.6</td>
<td>1.6</td>
<td>1.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Year 3 (n=329)</td>
<td>5.2</td>
<td>0.3</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Year 4 (n=300)</td>
<td>6.0</td>
<td>0.3</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Year 5 (n=274)</td>
<td>5.5</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Comparison of one-year and five-year active follow-up status by select disorder

<table>
<thead>
<tr>
<th>Disorder</th>
<th>One year</th>
<th>Five years</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAD Deficiency</td>
<td>88.7</td>
<td>53.9</td>
</tr>
<tr>
<td>3MC Deficiency</td>
<td>98.3</td>
<td>44.3</td>
</tr>
<tr>
<td>PKU (n=60)</td>
<td>90.0</td>
<td>62.5</td>
</tr>
<tr>
<td>VLCAD Deficiency</td>
<td>71.1</td>
<td>31.3</td>
</tr>
<tr>
<td>MMA (n=32)</td>
<td>50.0</td>
<td>38.7</td>
</tr>
<tr>
<td>CTD/CUD (n=31)</td>
<td>71.0</td>
<td>67.9</td>
</tr>
<tr>
<td>Galactosemia</td>
<td>89.3</td>
<td>85.2</td>
</tr>
<tr>
<td>GA1 (n=27)</td>
<td>81.3</td>
<td>66.7</td>
</tr>
<tr>
<td>MSUD (n=16)</td>
<td>81.3</td>
<td>62.5</td>
</tr>
<tr>
<td>IVA (n=16)</td>
<td>93.8</td>
<td>50.0</td>
</tr>
</tbody>
</table>
Percentage of missed APS reports among active patients in the following year:

- **Year 1**: 16.5% (74/448)
- **Year 2**: 9.9% (37/374)
- **Year 3**: 7.9% (26/329)
- **Year 4**: 2.7% (8/300)
- **Year 5**: 1.8% (5/274)
Next Steps

• Further exploration of patients that became lost to follow-up
 • Distance to clinic (GIS mapping)
• Detailed analysis by specific disorders
 • Symptoms and developmental status
 • Treatments & services provided
• Affordable Care Act impact on service utilization
Conclusion

• LTFU provides data on impact of newborn screening programs
• A valuable resource for clinical collaborations and program evaluation
• Limitations:
 • Missing data
 • Doesn’t capture highly detailed clinical information
• Challenges:
 • Cost of data collection
 • Late-onset disorders
 • Data capture from multiple specialty care centers
Disclaimer

The contents, including all opinions and views expressed or implied, are entirely personal and do not necessarily represent the opinions or views of the California Department of Public Health.