Injuries During Pregnancy:
Understanding & Tracking The Hidden Epidemic
A Focus on Mortality

Advisory Committee on Infant Mortality
Washington, DC – March, 2004
Introduction
Objectives

1. Discuss the nature and importance of injuries on fetal and infant mortality.
2. Discuss the deficiencies and barriers of using existing data to look at this issue.
3. Discuss how to improve surveillance of pregnancy-related injury and outcomes.
4. Introduce the morbidity issues
Fetal Outcome Reporting Age Severity Matrix for Maternal Injury

<table>
<thead>
<tr>
<th>Fetal Age</th>
<th>Maternal Injury</th>
<th>Maternal Severity</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td><20 Wk</td>
<td>Minor</td>
<td>None</td>
<td>None (Rare)</td>
</tr>
<tr>
<td></td>
<td>Serious</td>
<td>None</td>
<td>None (Rare)</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>≥20 Wk</td>
<td>Minor</td>
<td>Hidden</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Serious</td>
<td>Hidden</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>FDC?</td>
<td>FDC?</td>
</tr>
<tr>
<td></td>
<td>Minor</td>
<td>DC</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Serious</td>
<td>Hidden</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>DC</td>
<td>DC</td>
</tr>
</tbody>
</table>
Maternal Injury

The basis of the threat to fetuses
Leading Causes of Death
U.S. Women, Ages 15-34

1. Unintentional Injury = 6,363
 ➔ MV Traffic = 4,736

2. Malignant Neoplasms = 2,753

3. Homicide = 1,539

4. Heart Disease = 1,429

5. Suicide = 1,424

• Maternal Mortality (all ages) = ~450

Year: 2000, Source CDC, WISQARS, PRMS
In the U.S., more pregnant women die from intentional & unintentional injury than all “maternal mortality” related conditions combined!
Pregnancy-associated Injury Hospital Discharges 19 States, ‘97

Pregnancy-Associated Rate versus Rate Ratio for Leading Hospitalized Injury Mechanisms Discharges with ISS ≥ 4, 19 States, 1997

- Relative risk
- Absolute risk

- Pregnancy-associated Rate/100,000 Person Years
- Rate Ratio (pregnant/all)

- Fall
- Overexertion
- Struck by
- Cut/pierce
- MVT Occupant
- MVT Pedestrian
- Firearm
Leading Causes of ED Injury Visits – Women 17-35

- MV-Occupyant
- Struck By/Against
- Unintend Cut/Pierce
- Overexertion
- Fall
- Other Assault Struck By/Against
- Other Bite/Sting

Source: US, 2000 – CDC WISQARS (NEISS)
Leading Cause of Serious Maternal Injury

Deaths = MV

Hospitalizations = MV

ED Visits = MV
Biomechanical Considerations

Unbelted

Virginia Tech Simulation
Biomechanical Model
Fetal Injury Deaths
ICD Classification

ICD-9:

- 760.5 = Fetus or newborn affected by maternal conditions classifiable to 800-995

ICD-10:

- P00.5 = Newborn (suspected to be) affected by maternal *injury*
- P01.6 = Newborn (suspected to be) affected by maternal death (all types)
"For single cause tabulation of the underlying cause of death, the E code should be used as the primary code if, and only if, the morbid condition is classifiable to Chapter XVII (Injury and Poisoning)" (WHO, 1977)
Out of Sight Out of Mind?
Fetal Death Registries

• Most but not all states
• Only 20 weeks are greater included
• ICD limitations (no mechanism codes)
• Reliance on written cause narratives
Response to FDC Request

- **No response** - 8 States
- **Not available** - 26 states + DC
- **Available** - 16 states (55% of U.S. population)

272 certificates received
Traumatic Fetal Deaths
By Mechanism
Selected States, 1995-1997

- MV: 82%
- Fall: 3%
- Firearm: 6%
- Other: 9%

Weiss et al, JAMA, 2001, October 17;286(15):1862-1868
Fetal Perinatal Crash Death Comparisons, 1998

- **Fetal MV**
 - Low Estimate: 125
 - High Estimate: 179
 - ~700

- **Bicyclists, Ages 0-15**
 - 190

- **Firearms, Ages 0-9**
 - 179

- **MV Occupant, Age 0-1**
 - 125
Fetal MV Injury Deaths

- Account for more deaths than several leading childhood injury causes
Neonatal Deaths Due to Maternal Injury, by Year, U.S. 1979-2000

Underlying Cause of Death: from CDC Wonder, ICD-9 760.5 and P00.5
Total Miles (in billions) Driven by Women of Reproductive Age, 1969 to 1990

Bureau of Transportation Statistics, Omnibus Survey – US Department of Transportation
Neonatal Deaths Due to Maternal Injury, US, 1991 – 1994, Underlying vs Multiple Cause of Death

<table>
<thead>
<tr>
<th>Year</th>
<th>Underlying Cause of Death=760.5</th>
<th>All Records with 760.5 in MCOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>1993</td>
<td>26</td>
<td>46</td>
</tr>
<tr>
<td>1992</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>1991</td>
<td>19</td>
<td>31</td>
</tr>
<tr>
<td>TOTALS</td>
<td>88 (Mean=22)</td>
<td>149 (Mean=37)</td>
</tr>
</tbody>
</table>
Placental Abruption

- Reported neonatal deaths related to maternal injury account for at least 3% of all neonatal deaths associated with placental separation
Morbidity Issues
Birth Related Threats

- Prematurity
- Low Birthweight
- Obstetric complications
 - Placental injury
 - Uterine rupture
 - Amniotic rupture
 - Trauma-related elective and therapeutic abortion
Threats to the Baby

- Neonatal Death
- Adverse development due to direct and indirect neural and other organ damage
 - Mental retardation?
 - ADHD?
 - Autism?
 - Cerebral palsy?
 - Epilepsy?
 - ???
PubMed Keyword Listings – 1/02

- “Motor vehicle & Pregnancy” = 155
- “Alcohol & Pregnancy” = 15,060
Population Based Fetal Trauma Outcome Studies

- Outcomes at birth:
 - **Hyde** et al (*ObGyn*, 2003): Effect of motor vehicle crashes on birth & fetal outcomes in Utah

- Outcomes one or more years after birth
Utah Crash Linkage Summary

- ~3% of births linked to MV crash during pregnancy
- Pregnant women not wearing a seatbelt during an MVC were more likely to:
 - 1.3 times more likely to have low birth weight babies compared to pregnant women not involved in a MVC
 - nearly three times more likely to experience fetal death compared to pregnant women with seatbelts
<table>
<thead>
<tr>
<th>Maternal Outcomes (Schiff)</th>
<th>Adjusted RR* (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preterm labor</td>
<td>3.4 (3.0-3.9)</td>
</tr>
<tr>
<td>Placental abruption</td>
<td>4.0 (3.0-5.4)</td>
</tr>
<tr>
<td>Labor induction</td>
<td>1.1 (0.9-1.2)</td>
</tr>
<tr>
<td>Cesarean delivery</td>
<td>1.3 (1.1-1.5)</td>
</tr>
</tbody>
</table>

*Adjusted for smoking, education, PNC initiation
Infant Outcomes (Schiff)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Adjusted RR*</th>
<th>(95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preterm delivery</td>
<td>1.5</td>
<td>(1.2-1.8)</td>
</tr>
<tr>
<td>Low birth weight</td>
<td>1.4</td>
<td>(1.1-1.8)</td>
</tr>
<tr>
<td>Fetal distress</td>
<td>1.4</td>
<td>(1.2-1.7)</td>
</tr>
<tr>
<td>Fetal death</td>
<td>2.9</td>
<td>(1.2-6.9)</td>
</tr>
</tbody>
</table>

Adjusted for smoking, education, PNC initiation
Fetal Outcomes

- Fetuses are at unique risk for a variety of adverse outcomes from maternal injury, but research is needed to quantify these and long term risks.

(Prenatal traumatic disruption)
Summary

- Injury and motor vehicle injury is a surprisingly common occurrence during pregnancy.
- MV trauma to pregnant women has probably increased substantially over the last 20 years.
- Critical gaps in reporting and surveillance of pregnancy-related injury hide the problem.
- Fetal injury mortality represents a large proportion of childhood injury mortality.
- We are just beginning to understand and measure adverse birth outcomes due to trauma.
- No one has measured the long-term impact of non-fatal fetal injury among children.
General Recommendations

1. Incorporate maternal/fetal injury in national health prevention and research objectives.

2. Change ICD coding guidelines to encourage coding external cause of maternal injury in vital records.

3. Include maternal injuries in expanded definition of maternal mortality.

4. Incorporate pregnancy status & fetal outcomes in crash and other injury surveillance systems.
General Recommendations

5. States should continuously link birth to hospital discharge data to create a maternal injury surveillance system.

6. CDC should incorporate injury experience in pregnancy risk assessment research (PRAMS).

7. CDC should improve maternal injury details in their birth defects surveillance system.

8. NICHD should examine ways to study developmental outcomes in children exposed to \textit{in utero} trauma.
Motor Vehicle Recommendations

9. All states should continuously link birth and crash data.
10. The FHA should add pregnancy status to driver behavior surveys so maternal behaviors can be better understood.
11. NHTSA should mandate pregnant crash dummies tests to understand crash dynamics on women & fetuses.
12. States should enhance education and primary belt laws to improve the use and proper use of seat belts by pregnant women.
13. International seat-belt exemptions for pregnant women should be removed.
14. Research should explore ways to reduce maternal:
 - Driving
 - Motor vehicle travel
 - Crash risk
 - Occupant protection
Injury Prevention Begins at Conception!
Contact Information

Hank Weiss, MPH, PhD
Associate Professor
Phone: (412) 648-9290
Email: hw@injurycontrol.com
University of Pittsburgh
Center for Injury Research and Control (CIRCL)

Links:
http://www.circl.pitt.edu/home/