CDC's Quality Assurance and Harmonization Activities

Normalization of NBS Laboratory MS/MS Biomarker Results and the Development of a New Generation of Proficiency Testing Materials

Kostas Petritis, PhD
Chief, Biochemical Mass Spectrometry Laboratory
Newborn Screening and Molecular Biology Branch

Secretary’s Advisory Committee on Heritable Disorders in Newborns and Children Meeting
Washington, D.C., May 9, 2018
Services Provided by CDC’s Newborn Screening Quality Assurance Program (NSQAP)

The only comprehensive NBS quality assurance program using dried blood spots

- Proficiency testing
- Quality control materials
- Linearity materials
- Filter paper evaluation
- Training and consultation
- NBS translation research
CDC’s Newborn Screening Quality Assurance Program

By the Numbers

- **Annual bloodspots:** ≈1,000,000
- **Litters of blood per year:** ≈100
- **Labs participated (2017):** 660
- **Countries participated (2017):** 84
- **Distribution frequency:** Each quarter
- **Years of operation:** 40 years

PT programs: 16
- AC, AA, BIOT, GALT, G6PD, HORM, IRT, CAH, CFDNA, Hb, HIV, LSD, TREC, TOXO, XALD, UDOT.

QC programs: 13
- 17OHP/TGAL, AAAC, GALT, IRT, T4, TSH, XALD, CAH, GAMT, MSUD-PKU, MMA-HCY, HIV, LSD

Number of biochemical analytes: 64
- Excludes Hb phenotypes, CF genotypes etc
NORMALIZATION OF NBS LABORATORY MS/MS BIOMARKER RESULTS
MS/MS Biomarker Measurements and Cutoffs Can Vary Significantly Among Different Labs

>70% (23/32) of RUSP bloodspot disorders can be screened by MS/MS

<table>
<thead>
<tr>
<th>Major Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Extraction methodologies</td>
</tr>
<tr>
<td>• Derivatized vs. non-derivatized</td>
</tr>
<tr>
<td>• Few labs account for analyte recovery, most labs do not</td>
</tr>
<tr>
<td>• Use of additional/different analytes per disorder or second-tier screening</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Population tested</td>
</tr>
<tr>
<td>• Instrumentation</td>
</tr>
<tr>
<td>• Internal standards</td>
</tr>
<tr>
<td>• Calibration techniques</td>
</tr>
</tbody>
</table>
Method-specific Variability in C5DC Cutoffs in U.S. NBS Laboratories

C5DC: Glutaryl carnitine, CV: Coefficient of Variation, SD: Standard Deviation
How normalization works:

Simple analogy: Normalization of thermometer results

Liquid-in-Glass Thermometer (°C)

Fever at: 38 °C

Cutoff for Fever

Fever at: 100.4 °F

Platinum Resistance Thermometer (°F)

Freezer

Refrigerator

Room Temperature

Oven

y = 1.8x + 32
How normalization works:

Use of CDC Quality Control (QC) bloodspot materials to normalize mass spectrometry results

Same idea as previous slide but instead of:

- Thermometers ... we use Mass Spectrometers
- Four different temperatures ... we use 4 different concentrations of each biomarker in QC Samples

QC Mass Spectrometry Materials for Amino Acids and Acylcarnitines (AAAC)

- 29 biomarkers
- 4 concentration levels
- 5 duplicate MS/MS inter-day runs of each level
- Data reported back to CDC

NBS laboratories could use the QC materials to answer the following questions:

- What is the variability of each instrument within the same day?
- What is the variability of each instrument between days?
- How similar are the results between instruments?
Addressing Succinylacetone (SUAC) Lab-to-Lab Variability by Normalizing Results

- Use QCs to normalize
- Use PTs to validate the normalization worked

Expectation:
- NBS labs receive the same PT specimens
- PT analytical results should be the same

Methods:
- FIA-MS/MS results
- PT specimens are analyzed only once
- QC and PT results from USQ3 2016 event

Concentrations at µmol/L, SUAC: Succinylacetone, PT: Proficiency Test, FIA: Flow Injection Analysis
Addressing SUAC Lab-to-Lab Variability by Normalizing Results

SUAC PT Normalization

<table>
<thead>
<tr>
<th>Lab</th>
<th>Raw Value</th>
<th>Normalized Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Lab A</td>
<td>62.7</td>
<td>25.7</td>
</tr>
<tr>
<td>State Lab B</td>
<td>44.3</td>
<td>25.6</td>
</tr>
<tr>
<td>State Lab C</td>
<td>10.7</td>
<td>22.9</td>
</tr>
<tr>
<td>CDC</td>
<td>27.3</td>
<td>27.3</td>
</tr>
<tr>
<td>CV</td>
<td>62%</td>
<td>7%</td>
</tr>
</tbody>
</table>

SUAC Cut-off Normalization

<table>
<thead>
<tr>
<th>Lab</th>
<th>Raw Value</th>
<th>Normalized Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Lab A</td>
<td>5.4</td>
<td>2.7</td>
</tr>
<tr>
<td>State Lab B</td>
<td>3.0</td>
<td>1.9</td>
</tr>
<tr>
<td>State Lab C</td>
<td>1.0</td>
<td>2.1</td>
</tr>
<tr>
<td>CDC</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>CV</td>
<td>64%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Times Difference between Lab A and Lab C

- **Normalization Before**: 5.9
- **Normalization After**: 1.12

Normalization Before: 5.4
- **Normalization After**: 1.28

CDC cut-off: The mean of all US State laboratories non-normalized cut-offs
Does Normalization Work?

Orthogonal validation using the PT results

Glutaryl carnitine (C5DC) PT results

Without normalization … CV: 32.8%

After normalization … CV: 14.6%

CV: Coefficient of Variation, PT: Proficiency Test
Does Normalization Work?
Orthogonal validation using the PT results

Citrulline (Cit) PT results
Without normalization ... CV: 15.4%

After normalization ... CV: 6.6%

CV: Coefficient of Variation, PT: Proficiency Test
Does Normalization Work?

Orthogonal validation using the PT results

Malonylcarnitine (C3DC) PT results

Without normalization … CV: 56.7%

After normalization … CV: 18.7%

CV: Coefficient of Variation, PT: Proficiency Test
Does Normalization Work?

Orthogonal validation using the PT results

US and International NBS labs
15 different methods (most non-MS/MS)
+: US Labs, ●: International Labs

Phenylalanine PT results
Without normalization … CV: 20.8%

Phenylalanine PT results
After normalization … CV: 10.1%
NBS labs LC-MS/MS biomarker CV results before and after normalization

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C3DC</td>
<td>56.7%</td>
<td>18.7%</td>
<td>54.5%</td>
<td>24.3%</td>
</tr>
<tr>
<td>SUAC</td>
<td>50.8%</td>
<td>24.5%</td>
<td>148.4%</td>
<td>31.7%</td>
</tr>
<tr>
<td>Arg</td>
<td>34.7%</td>
<td>18.2%</td>
<td>37.3%</td>
<td>22.1%</td>
</tr>
<tr>
<td>C5DC</td>
<td>32.8%</td>
<td>14.6%</td>
<td>39.5%</td>
<td>19.5%</td>
</tr>
<tr>
<td>C16OH</td>
<td>23.1%</td>
<td>14.9%</td>
<td>70.5%</td>
<td>21.4%</td>
</tr>
<tr>
<td>Val</td>
<td>19.9%</td>
<td>15.0%</td>
<td>22.9%</td>
<td>12.6%</td>
</tr>
<tr>
<td>C5OH</td>
<td>19.8%</td>
<td>16.2%</td>
<td>36.0%</td>
<td>14.8%</td>
</tr>
<tr>
<td>C0(L)</td>
<td>19.0%</td>
<td>15.9%</td>
<td>20.5%</td>
<td>13.7%</td>
</tr>
<tr>
<td>C5</td>
<td>18.8%</td>
<td>13.2%</td>
<td>17.9%</td>
<td>12.0%</td>
</tr>
<tr>
<td>C10</td>
<td>17.7%</td>
<td>12.3%</td>
<td>24.1%</td>
<td>12.9%</td>
</tr>
<tr>
<td>Cit</td>
<td>15.4%</td>
<td>6.6%</td>
<td>22.6%</td>
<td>13.0%</td>
</tr>
<tr>
<td>C18</td>
<td>15.3%</td>
<td>11.6%</td>
<td>20.2%</td>
<td>16.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>14.8%</td>
<td>9.5%</td>
<td>22.9%</td>
<td>12.4%</td>
</tr>
<tr>
<td>C4</td>
<td>14.3%</td>
<td>10.0%</td>
<td>18.0%</td>
<td>12.0%</td>
</tr>
<tr>
<td>C18OH</td>
<td>13.3%</td>
<td>11.7%</td>
<td>49.4%</td>
<td>21.9%</td>
</tr>
<tr>
<td>Phe</td>
<td>13.1%</td>
<td>7.9%</td>
<td>20.8%</td>
<td>10.1%</td>
</tr>
<tr>
<td>Tyr</td>
<td>12.7%</td>
<td>9.0%</td>
<td>19.0%</td>
<td>15.7%</td>
</tr>
<tr>
<td>C8</td>
<td>12.2%</td>
<td>11.9%</td>
<td>19.7%</td>
<td>15.1%</td>
</tr>
<tr>
<td>C3</td>
<td>12.1%</td>
<td>9.7%</td>
<td>20.4%</td>
<td>16.6%</td>
</tr>
<tr>
<td>C6</td>
<td>10.9%</td>
<td>10.7%</td>
<td>20.9%</td>
<td>15.5%</td>
</tr>
<tr>
<td>Leu</td>
<td>10.8%</td>
<td>8.2%</td>
<td>18.2%</td>
<td>10.1%</td>
</tr>
<tr>
<td>C14</td>
<td>8.5%</td>
<td>8.2%</td>
<td>19.1%</td>
<td>15.2%</td>
</tr>
<tr>
<td>C16</td>
<td>7.2%</td>
<td>7.1%</td>
<td>14.9%</td>
<td>13.3%</td>
</tr>
</tbody>
</table>

Note: The represents data from CDC's NSQAP Proficiency Testing Program in the 3rd Quarter of 2016
Normalization of MS/MS results allows the normalization of cutoffs

Glutaryl carnitine (C5DC) US labs cutoffs

Without normalization ... CV: 45.55%

After normalization ... CV: 30.22%

NBS labs with high biomarker normalized cutoffs could reevaluate them

Method Platform

C5DC: Glutaryl carnitine, CV: Coefficient of Variation, PT: Proficiency Test
DEVELOPMENT OF A NEW GENERATION OF PROFICIENCY TESTING MATERIALS
High Accuracy Multi-Analyte Dried Blood Spot Enrichment Method

Breakthrough: Enrichment within 5% of desired concentration

+ Ability to normalize MS/MS data

+ Confirmed cases MS/MS data from NBS labs with quarter + year info

↓ Proficiency testing materials that are “biochemical carbon copies” of babies that were diagnosed with the disorder
New Generation of PT materials

When: July Shipment (Q3-2018 PT event)

What: Proficiency testing materials that are “biochemical carbon copies” of babies that were diagnosed with the disorder for the analytes and ratios of interest

Which ones: Amino acid, Fatty Acid Oxidation and Organic Acid Disorders

Where: From MS/MS data submitted to CDC from US state labs that contained quarter and year of specimen collection information

How: Report as usual, working on updating NSQAP website

Interpretive algorithms: Q3 2018 PTs should work with any workflow, including reflex to biochemical second-tier screening

Looking forward to feedback from NBS labs!
Future Directions

- CDC will continue to improve normalization and visualization of the results and will expand the number of analytes in QC materials.
- High accuracy multi-analyte bloodspot enrichment will allow the creation of borderline materials for educational purposes.
- CDC will be creating reference materials for MS/MS kits to use for difference applications, including:
 - Changes of instrumentation, method, kit lots
 - Abnormal and borderline specimens to assess cut-offs
 - Linearity materials for method performance
 - Provide assistance for method development, validation
- CDC is redesigning the data reporting website to improve QC and PT data submission and to accommodate expanded programs.
Conclusions

- Based on preliminary results: It seems possible to normalize MS/MS analyte results by using the CDC's QC materials.
- The CV of all PT analytes improved after normalization.
- CDC will be reporting de-identified normalized cutoffs to NBS laboratories to help them compare their cutoffs to their peers.
- CDC has begun the development of new PT and borderline materials that more closely mimic the pattern and concentrations of biochemical analytes as screened in babies diagnosed with the disease.
- CDC is developing a repository of artificial blood spot specimens to be used as kits for verification/validation or program evaluation. Samples will be distributed upon request.
Acknowledgments

CDC
Austin Pickens
Brandon Kenwood
Chris Haynes
Tim Lim
Sharon Flores
Carter Asef
Elizabeth Hall
Gyliann Pena
Victor De Jesus
Joanne Mei
Carla Cuthbert

US NBS labs (normalization)
Mary Seeterlin, Michigan
Patrice Held, Wisconsin
Adrienne Manning, Connecticut
Sonal Bhakta, Arizona
Mark Morrissey, New York

Many thanks to all NBS laboratories that submitted de-identified confirmed cases data to CDC
Thank you for your attention!

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone: 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
Visit: www.cdc.gov | Contact CDC at: 1-800-CDC-INFO or www.cdc.gov/info

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Use of trade names and commercial sources in this presentation is for identification only and does not imply endorsement by the Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, the Public Health Service, or the U.S. Department of Health and Human Services.