Nomination and Prioritization Reports: MPS I and Pompe Disease

Nancy S. Green, MD
Associate Dean for Clinical Research Operations
Associate Professor of Pediatric Hematology
Columbia University

May 17, 2012
Nomination and Prioritization Work Group

- Dr. Joseph Bocchini, Jr., MD – Chair
- Fred Lorey, PhD
- Dietrich Matern, MD
- Andrea Williams
- Nancy Green, MD
Outline of Presentation

- **MPS I:**
 - Present review by Nomination and Prioritization Work Group
 - Discussion and Vote by Committee: Move forward to Evidence Review?

- **Pompe:**
 - Present review by Nomination and Prioritization Work Group - update
 - Discussion and Vote by Committee: Move forward to Evidence Review?
MPS I: Nomination

- **Nominator:** National MPS Society
 - Barbara Wedehase, MSW, GCG, Executive Director

- **Medically serious condition:**
 - Defective glycosaminoglycan catabolism (↓α-Iduronidase)
 - Debilitating < 1 yr: multi-system (cardiac, pulmonary, CNS, other)
 - Fatal within 1st decade of life; considerable CNS impairment (Hurler Syndrome); Absent enzyme.
 - 40-60% of cases; Symptoms by 6 months
 - Attenuated forms with slower, later progress;
 - Symptoms by 5 years; Less or no CNS; some enzyme activity

- **Estimated incidence** 1:100,000 in the U.S.,
 - including those within the spectrum of disease.
 - Actual U.S. incidence is unknown.
MPS I: Case Definition & Disease Spectrum

- Case definition and disease spectrum - Yes
- Attenuated forms: Broader spectrum of age and onset:
 - Later symptoms and slower progression;
 - Approximately half of cases
- All forms: little or absent enzyme activity
 - Depends on tissue tested
- Molecular analysis provides good correlation with protein function
- Some uncertain genotype-phenotype correlates:
 - Some variants have unclear impact on enzyme
 - Pseudo-deficiency variant = rare
MPS I: Population-based Newborn Screening & Diagnosis

Recently established algorithm*

• Screen by enzyme activity (MS/MS): low/absent
 - Absent activity: severe form
 - Low activity: generally less severe but serious, but levels are imperfect predictors of severity
 [Multiplex with other LSDs]

• DNA sequencing of \(\alpha \)-Iduronidase
 - Predict severity (if mutation is obvious known)
 - May need to sequence gene in family members (e.g. for novel mutations)
 - Technical challenges for some states? (Fine for Krabbe - NY)

*Wang, et al. ACMG Work Group on Diagnostic Confirmation of Lysosomal Storage Diseases. Genetics in Medicine, 2011
MPS I: Analytic Validity

• Washington State: 75,000 screened (anonymous) by multiplex (3 enzymes):
 • 5 identified below cutoff value: 1 early; 1 attenuated; 1 heterozygote; 2 no identifiable mutation.
 - False positive rate approx. 1:14,000.

• Missouri: Assay development is underway

• Several states (e.g. New Jersey, CA):
 - Currently deliberating about their screening approach
MPS I: Clinical utility

- Treatment improves outcomes:
 - HSC* transplant for the severe form
 - Best < Age 2 yrs;
 - Arrests disease impact on CNS;
 - Lifespan if transplanted vs. not: 15.6 vs. 7.9 yrs (2008)
 - 10-15% mortality, plus 10-15% GVHD, other complications
 - FDA approved therapy: ERT
 - Milder forms: enzyme replacement therapy or pre-BMT.
 - Does not cross the blood–brain barrier, thus does not improve CNS effects for severe form (Intermediate?).

* Hematopoietic stem cell transplant
MPS I: Issues & Recommendation

- **Established overall**: Case definition, Screening and diagnostic protocol, Treatment protocols
 - Appeal of multiplex testing

- **Recommend**: *Move forward to Evidence Review*

 BUT WITH RESERVATIONS
 - Uncertain: Identifying various forms of MPS, though each type is serious and treatable: Phenotypic spectrum and genotypic mutations
 - Uncertain: Impact of treatment with HSCT and ERT, especially for variants (50% of those identified)
 - Uncertain: Acceptability to parents (e.g. Krabbe experience, other non-oncologic disorders)
 - Uncertain: State NBS laboratory and program challenges
 - Uncertain: Public health impact
MPS I
Nomination and Prioritization: Comments and Questions?
Columbia University Medical Center
Previously nominated & reviewed in 2008
- Nominator: Priya S. Kishnani, MD, Duke University

Pompe Disease is medically serious:
- Deficient enzyme Acid α-glucosidase (GAA): Hydrolyzes lysosomal glycogen → accumulates in muscle
- Progressive muscular disease: skeletal +/- cardiac
- 1/3 have the infant form (early & rapid Sx, cardiac too)
- Infantile: Symptoms at ~2 months
- 100% mortality in the first year of life

Estimated incidence: 1/40,000
- Including Infantile and later onset forms
Infantile versus later onset

• Later onset: more variable in timing of onset, its impact on health, treatment issues
• Distinguishing infantile onset from late-onset:
 - Can be challenging
• Pseudo-deficiency: low efficiency enzyme
 – Prevalent among Asian populations
 – Would need to be discerned
1st tier screening: GAA enzyme activity level
- Fluorometry or MS/MS - perform similarly
- Enzyme levels differ by tissue

Newly clarified for diagnostic testing*:

- Leukocyte GAA activity
- Followed by GAA gene sequencing
 - Likely to detect infantile, but some uncertain mutations
 - (Technical challenges for some state labs? NY: Fine for Krabbe)
 - CRIM status (Western Blotting)

*Wang, et al. ACMG Work Group on Diagnostic Confirmation of Lysosomal Storage Diseases. Genetics in Medicine, 2011
Pompe: Analytic validity

- DBS Screen: GAA Enzyme activity
 - Different methods appear comparable (multiplex)
- Prospective pilot data from Washington State (false positive rate: 0.01%).
- Illinois: 8002 screened - 2 false positives (BB 2/20/2012)
- Taiwan: 130,000 infants screened – 4 Diagnosed
 - Repeat blood testing rate: 0.82%;
 - Clinical recall rate 0.091%
- Austria (35,000 babies screened):
 - False positive rate: 0.006%
Pompe: Clinical utility

- Taiwan: 130,000 infants screened
 - 4 diagnosed by NBS in 1st month;
 - 3 diagnosed clinically between 3-6 months

- Children who would benefit from newborn identification and therapy = 1/3 of those identified
- Clinical utility for children in the later onset group: not addressed by the Nominator
Pompe: Treatment

- Defined treatment protocols exist using enzyme replacement therapy (ERT)
- Earlier diagnosis and treatment has been shown to improve outcomes.
- C/W European consensus (2011)
- Open issues: CRIM = cross-reactive immunologic material
 - Some with limited response to treatment
 (CRIM negative) – 20-30% of infantile on treatment (Kishnani 2010)
 - African American common
 - Sensitization: Antibodies to GAA replacement (“Anti-CRIM”)
Pompe: Open Issues

• Identifying late onset disease – 2/3 of cases.
• Challenges in DNA sequencing:
 How clinically predictive
 Technical challenges for some state labs.
• ERT: Sensitization to enzyme replacement.
Pompe: Work Group Recommendation

- Move forward to Evidence Review
- Review of the specific areas previously deficient:
 - Improved screening test specificity for infantile form
 - Standardized method of diagnosis of pre-symptomatic infants
 - Benefit and harm of diagnosing late-onset Pompe disease during infancy
 - Review any cost or cost-effectiveness data
 - Impact on State Health Departments
 - New: Public health impact
Pompe
Nomination and Prioritization: Comments and Questions?